
Preprin
t

Modernizing the Introduction to Software
Engineering Course

Full Paper
SACLA 2019

© The authors/SACLA

Marko Schütz-Schmuck1[0000−0002−0059−2726]

Department of Mathematical Sciences, University of Puerto Rico at Mayagüez,
Puerto Rico

marko.schutz@upr.edu

Abstract. We report on the modernization of an undergraduate, intro-
ductory course in software engineering that started in 2017-2018 semester
2 offered at the University of Puerto Rico, Mayagüez. We present the
institutional setting, our underlying philosophy, and resources consid-
ered. We aimed at complementing informal descriptions in any phase
with formal ones. We describe the revised course, discuss evaluations of
the modernized course as held in two subsequent semesters, and outline
options for future improvement.

Keywords: software engineering · formal methods · education

1 Introduction

“What should be taught in an introductory software engineering (I2SE) course
and how should it be taught?” Or, even more generally, “What is software en-
gineering?” and “What is engineering?”. After two colleagues retired who had
been teaching our I2SE course, we took the opportunity to revisit these questions
and to review the I2SE course. No simple or final answer would be expected.
Nonetheless, the questions lead to valuable insights and allow us to discover our
tenets.

We accept that engineering combines scientific knowledge with creativity and
imagination to design an artifact and to show of this design that the resulting
artifact will have desired properties. To predict the properties engineering uses
scientific results and mathematics. Each of the sub-disciplines of engineering uses
the branches of mathematics most appropriate for the type of properties of in-
terest in the sub-discipline. Many of the sub-disciplines use differential equations
for modeling and simulation, also calculus and linear algebra are frequently used.

Branches of mathematics relevant in software engineering are logic and proofs,
algebra, and discrete mathematics. Properties of software-intensive systems can
then be expressed and justified using such mathematics.



Preprin
t

2

We believe that descriptions, statements, etc. in an adequate formal language
should complement (not replace) any informal descriptions of properties of a
system-to-be or of its environment. Or, in the words of Mills: “Natural language
is imprecise; formal language is inaccurate.” [19]. This affects all phases and/or
iterations into which we might choose to subdivide the software engineering
process. The use of suitable formal languages thus cuts across the topics of our
course.

We also believe the little use of formal texts is an indication of the imma-
turity of software engineering. Considering its relative age, it is not surprising
that this discipline is less mature than e.g. mechanical engineering. First uses of
the term “software engineering” date back to the mid to late 1960s, so software
engineering is now in its 50s. Mechanical engineering, in comparison, can be said
to have started with Newton’s laws of motion - first published 1687 - making it
about 330 years of age. This time has allowed the body of skills and knowledge
in mechanical engineering to mature and stabilize while at the same time allow-
ing society to form reasonable expectations towards the discipline. In contrast,
the body of skills and knowledge in software engineering still seems much less
stable and as society experiments with this young discipline it shows lenience
towards the discipline’s failures. From the discipline’s successes and failures rea-
sonable expectations have to form, and to the extent to which society increases
its reliance on the outcomes of software engineering, the discipline will have to
mature. To this end it will increasingly develop and incorporate scientific (in
this case mathematical) foundations in similar ways as what can be seen in the
more mature engineering disciplines.

We do not believe an introduction of formal texts to be a panacea. Con-
versely, we do believe that most phases of software engineering benefit from
complementing informal with formal descriptions, justifications, etc. and that
the mere attempt to express more formally an understanding of the domain, of
requirements, … improves that understanding.

Coming back to our initial question “What should be taught in an intro-
ductory software engineering course and how should it be taught?”. As can be
expected, the answer was already largely constrained. The existing programs at
our university which require the I2SE course with the courses that build on it,
the existing programs’ accreditation, the way the courses leading up to I2SE are
taught, and the professional opinions of colleagues constrained and guided the
exploration of this question. We detail the context in which we operate and the
constraints arising from it in section 3. We considered related courses at other
universities, a selection of textbooks, and reports on innovative ideas on intro-
ducing rigor and formal reasoning into computing curricula. Only one of the
textbooks considered combined formal and informal language in the way we
wanted [8,11,9]. More detail on related work is presented in section 2. None
of the related courses at other institutions seemed directly usable as a model
for our revised course: either for lack of consistently complementing the formal
with the informal or for lack of openly accessible information about details of
the course. However, from Bjørner’s textbook and his direct advice we revised



Preprin
t

3

the course and section 4 presents details on the way the course was offered in
2017-2018 semester 2 and in 2018-2019 semester 1, respectively. Students did
not receive the revised course as positively as we had hoped. Section 5 gathers
feedback from students’ blogs and surveys of the two distinct editions held up
to the time of this writing, but low student response rates to our surveys make
conclusions rather difficult. For the upcoming edition we plan to make improve-
ments in the delivery of the course. Our lessons learned and plans for the future
of the course are in section 6.

2 Related Work

Whether the university computing curricula need a stronger emphasis on com-
plementing informal descriptions with formal ones is an issue of ongoing debate.
Lethbridge’s survey report [18] has been used to argue for reducing the formal,
more rigorous, forms of description as e.g. reported in [26]. Even when accept-
ing the need for such stronger emphasis, there are different opinions as to the
way in which such stronger emphasis should be implemented in the curricula.
Proposals range from elective courses on “logic for everybody” as proposed in
[24] to the gamification of formal specification as proposed in e.g. [21,3] to an
integration of relevant topics into the entire program of study, affecting almost
every course related to computing or mathematics. Dines Bjørner proposed at
least as early as 1993 [7] (and possibly earlier) this emphasis of the complemen-
tary nature of informal and formal descriptions as a cross-cutting aspect of uni-
versity computing curricula in software engineering. In [12] he and Jorge Cuéllar
expand substantially on those ideas, which are later incorporated into Bjørner’s
three-volume textbook on software engineering [8,11,9]. Similar views are pre-
sented by the ITiCSE 2000 Working Group on Formal Methods Education [14]:

Eventually, the working group aspires to see the concepts of formal meth-
ods integrated seamlessly into the computing curriculum so that it is not
necessary to separate them in our discussions.

We considered the publicly available course catalog entries and syllabi of soft-
ware engineering courses at numerous institutions including but not limited to
MIT, Cornell, Stanford, and McMaster. MIT does not have an explicit software
engineering course, the one that comes closest would be “Software Construction”
[5], although it focuses most on implementation aspects. Cornell has a “Software
Engineering” course [6] which includes very little related to formal descriptions,
specifications, verification, etc. Stanford does not seem to offer an introduc-
tory software engineering course and it is not clear whether/how the relevant
topics are distributed over other courses. McMaster offers many courses cover-
ing software engineering [1] including (but not limited to): “Software Design I
- Introduction to Software Development”, “Software Design II - Large System
Design”, “Software Design III - Concurrent System Design”, “Software Devel-
opment”, “Software Requirements And Security Considerations”, and “Software
Testing”. Only short descriptions of these courses are available on McMaster’s



Preprin
t

4

web pages. From the short course descriptions it is impossible to see to what ex-
tent they are concerned with the complementary nature of informal and formal
descriptions.

We further considered the main undergraduate software engineering text-
books including but not limited to Sommerville [23], Pfleeger [20], Schach [22],
and Ghezzi et al. [13]. All of these mention formal languages (there often called
“formal methods”). None of them uses a suitable formal language in the cross-
cutting and complementary way we would like. On the contrary, we find the
treatment of “formal methods” delegated to a single chapter, possibly even an
online supplement.

To our knowledge Bjørner’s three-volume textbook [8,11,9] is the only text-
book where formal text consistently complements informal text. This was the
clincher to select it. In his textbook Bjørner proposes the triptych paradigm,
separating domain description, requirements prescription, and software design
as the phases of software development in the large. This paradigm differs from
e.g. that of van Lamsweerde [17] in its identification of domain description as a
phase of its own whereas van Lamsweerde considers the elicitation and elabora-
tion of domain properties and assumptions to be part of requirements capture.
Bjørner’s textbooks use the formal language RSL (the RAISE Specification Lan-
guage). Quoting [8]

RSL, which we primarily use in these volumes, features both property-
oriented and model-oriented means of expression, has a somewhat so-
phisticated object-oriented means of compositionality, and borrows from
CSP [288, 289, 448, 456] to offer a means of expressing concurrency. Ex-
tensions to RSL have also been proposed, for example with timing [535],
and with Duration Calculus, that is, temporal logic ideas [274].

CSP (Communicating Sequential Processes) [15] allows describing patterns
of communication and synchronization among concurrently running activities.

Bjorner uses RSL and CSP throughout the entire three-volume textbook
series to formally complement topics as diverse as container harbors or state
machines.

3 Initial Situation

For historical reasons our institution offers several programs in computing at the
undergraduate level:

program department faculty/college
Computer Engineering (CE) Electrical Engineering Engineering
Computer Science (CS) Mathematical Sciences Arts and Sciences
Computer Science Computer Science Engineering
& Engineering (CS&E) & Engineering
Software Engineering (SE) Computer Science Engineering

& Engineering



Preprin
t

5

There are 4 courses focusing on Software Engineering: “Introduction to Soft-
ware Engineering”, “Software Requirements”, “Software Design”, and “Software
Reliability Testing”.

There are two offers of a course called “Introduction to Software Engineer-
ing”: one is by the Department of Mathematical Sciences, the other by the (re-
cently founded) Department of Computer Science and Engineering. The two
courses are considered equivalent with respect to students’ program require-
ments. They only differ in the faculty assigned to the course and, as a conse-
quence, in the textbook used, the homework assignments and other such aspects
as they vary from one faculty member to another.

Students in all of the above programs need to take I2SE, but only students in
SE need to take all the remaining courses. For students in other programs they
are electives. For the students in SE and in CE the I2SE course is a pre-requisite
for taking their capstone project course.

The programs are ABET accredited except for the CS program, which is
working towards accreditation. The I2SE ABET accredited syllabus allocates
times for covering topics as in table 1

Table 1. time allocated to topics

topic contact hours
Introduction to the course 1
The Software Lifecycle 3
Estimation: Cost, effort and agenda 3
Planning and tracking 3
Risk analysis and management 2
User Interface design 1
UML language 4
Requirements analysis and specification 5
Design principles and concepts, system design testing 6
Software testing 4
Exams, discussion sessions, and presentations 13
Total hours: (equivalent to contact period) 45

When two colleagues who had been involved in teaching I2SE retired in short
succession and a new colleague started teaching the course we considered this to
be a good opportunity to take a fresh look at how I2SE is taught.

4 Revised Course

Diverse influences contributed to the shape of the revised course. We contacted
Dines Bjørner about the use of his textbook in our course, he was immediately
available and we are very grateful for his many helpful comments, suggestions,
and his general support.



Preprin
t

6

We initially selected material to cover in consultation with the author. The
course contributes to ABET-accredited programs and we needed the revised
course to follow the existing ABET-accredited syllabus. For some students in
programs with a capstone-course requirement I2SE would be the only course
explicitly exposing them to software engineering topics. In light of these require-
ments we re-balanced the time spent on covering some of the material, added
material on time management, scheduling, planning and estimation, on risk man-
agement, and on user interfaces. These concerns together with the philosophy
presented in section 1, the choice of textbook, and discussions with colleagues
shaped the revised course. It was first held in the 2017-2018 spring semester in 3
separate small sections with 14, 17, and 19 students, respectively and then held
a second time in the 2018-2019 fall semester in one larger section of 53 students.
In both cases we used Moodle [2] as the course’s learning management system.

The details changed a little between the 2 semesters due to the difference in
section size and since we made some adjustments based on the experience from
the first offering.

In our first offering we did not include time management. Also, Algebra,
Mathematical Logic, and CSP Channels were discussed right after the chapter
on The Triptych SE Paradigm instead of a little bit later in the course. We
initially thought students would benefit from the relatively early exposure to
these topics, but from personal conversation we concluded that placing them
later in the course would benefit the students.

The topics of the course are now covered by the resources in table 2.
The course emphasizes application by giving the students homework for every

week. We time the homework so that students have to independently study the
material in order to complete the homework. The goal is to make learning more
problem-based. Homework was due on each Friday before class.

For the duration of the semester, students work within a broad application
domain from one of the 15 domains outlined in the textbook - assigned using the
student’s ID modulus 15. We took homework exercises from the textbook and
most exercises referred to the student’s domain. We chose the 15 domains from
the textbook since they have already been substantially elaborated and they are
each broad enough to allow students to find a distinct niche within the domain.

4.1 2017-2018 semester 2

Since we had 3 small sections for the first offering and no assistance, we decided
on the following way of homework assessment:

– Friday’s sessions were for homework discussion
– students individually presented one exercise at a time
– the work was discussed with the other students
– students’ turn followed the class list
– if a student forfeited her/his turn, it was the next student’s turn to present

the current exercise
– we managed an average of 5 presentations per Friday session of 50 min



Preprin
t

7

Table 2. resources used to cover course topics

contact chapter(s) chapter title(s)
hours

1 [9] Ch. 1 The Triptych SE Paradigm
2 [16,25] Time Management, Planning, Scheduling, Tracking
2 [9] Ch. 2 Documents
2 [9] Ch. 5 Phenomena and Concepts
1 [8] Ch. 8 Algebras
1 [8] Ch. 9 Mathematical Logic
2 [8] Ch. 21 CSP Channels
3 [9] Ch. 8 Overview of Domain Engineering

[9] Ch. 11 Domain Facets
[9] Ch. 16 Domain Engineering Process Model

2 [11] Ch. 10 Modularisation (Objects)
2 [11] Ch. 11 Automata and Machines
1 [11] Ch. 12 Petri Nets
2 [11] Ch. 13 Message Sequence Charts
1 [11] Ch. 14 Statecharts
1 [9] Ch. 17 Overview of Requirements Engineering
2 [9] Ch. 19 Requirements Facets

[9] Ch. 24 Requirements Engineering Process Model
1 [9] Ch. 25 Hardware/Software Codesign

[9] Ch. 26 Software Architecture Design
[9] Ch. 30 Computing Systems Design Process Model
[9] Ch. 31 The Triptych Development Process Model

1 [9] Ch. 32 Finale
1 [17] Ch. 3.2 Risk Analysis
1 User Interface Design

29

– the average of a student’s best 4 presentations formed her/his homework
grade

4.2 2018-2019 semester 1

The second offering was also without assistance. The mode of homework presen-
tation used in the previous semester was not practical for a single group of 53
students. We decided to use peer assessment:

– the homework grade was split in two grades: one for the homework a student
submitted and another for homework a student assessed of other students

– for every one of the 15 homework assignments we prepared a catalog of (on
average) 15 assessment aspects

– assessment aspects had weights from 1-10
– students assessed the aspects in the range of 1-100
– Friday’s sessions - after students’ submission - were used to discuss example

solutions, to clarify remaining doubts on the assessment aspects, and to lead
into the assessment in general



Preprin
t

8

– for every homework submission the submitting student assessed 5 randomly
assigned peer submissions

– every student’s assessment had a weight of 1
– for every homework we randomly assigned 6 student submissions to be as-

sessed by the professor using the same assessment aspects
– the professor’s assessments had a weight of 6
– we used the grade calculation in the Moodle workshop activity [4] for the

grade on the assessments

5 Reception

5.1 From Students’ Blogs

One of the students’ (graded) course work activities is to regularly write a re-
flective learning journal (blog). We encourage the students to write about any
aspect of the course, its content, the presentation, their experiences, suggestions,
etc. We can expect that the fact that this is graded and not anonymous will
change the way the students write and also what they write. On the other hand,
we get a very high response rate. Students stated that they:

– previously “had a concept of Software Engineering being pure programming”
– were surprised to see an immediate application “of my knowledge from the

class” on an intern job
– disliked the peer assessment since “some students do their job in the assess-

ment and give constructive criticism while other just gave random grades”
– found the amount of homework too much
– “still do not understand RSL or CSP and really hate it”
– “believe the weekly homeworks and assessments help A LOT for this course,

not only because it forces you to study the material every week, but you get
to see what your classmates did (anonymously, of course) which opens your
mind to other possibilities in solving these problems”

– liked “The weekly homeworks [..] because they keep you involved in the class
even when you are not attending lectures”

– are “still hating this book”
– “found it[the textbook] somewhat strange and needed time getting used to.

In the end, the book was actually good, it provided a lot of examples so it
made up for any shortfalls.”

– “don’t mind the long exams as they provide you with lots of opportunities
to get a decent grade”

– considered “state charts and sequence charts are one of the most important
parts of a system in the design process [..] because last year I was working
with a company as a COOP student and [..] the majority of documentation
[of the system] were state charts and sequence charts modeling the behavior
of the system”

– found that “time log and analysis of the management of time was impressive”



Preprin
t

9

– had heard about “new methods and tools that are been used by the industry
as agile methodologies, but none of them were discussed in the course.”

– “really felt like [they were] learning something useful: Documents, Domain
Facets, Petri Nets, Statecharts and Sequence Charts, Requirements Facets
and Software Design (as well as the time management week) were all great
weeks for this class.”

– found “Learning about how to describe the domain and write a good require-
ments document really shaped the way that I think about tackling anything
that requires the modelling of systems.”

– thought “The project management sections were highlights and definitely
deserve to have more attention.”

– “Petri Nets are actually fun though.”

5.2 Student Surveys

1. 2017-2018 semester 1 We conducted a survey towards the semester end.
Students anonymously rated the following aspects concerning the professor
on a scale from 1 indicating “never” to 7 indicating “frequently”:

(a) Indicates where the class is going, (b) Explains material clearly,
(c) Indicates important points to remember, (d) Shows genuine interest in
students, (e) Effectively directs and stimulates discussion, (f) Provides help-
ful comments on homework, (g) Is tolerant of different opinions expressed
in class, (h) Is available outside of class, (i) Explains thinking behind state-
ments, (j) Effectively encourages students to ask questions and give answers,
(k) Adjusts pace of class to the students’ level of understanding, (l) Seems
well-prepared, (m) Stimulates interest in material, (n) Treats students with
respect, and (o) Is effective, overall, in helping me learn.
Only 11 of the students from all 3 courses together responded. Figure 1
summarizes the results.

Fig. 1. Responses 1-7 to questions (a)-(o) about the professor 2017-2018-S2



Preprin
t

10

Figure 2 summarizes results of students’ assessment of the course on a scale
of 1 indicating “no or very little” to 7 indicating “yes or very much” using
the aspects:

(a) Would you likely recommend this course to a friend or fellow stu-
dent?, (b) Did the content that was delivered and the organization of the
course match what you were promised in the syllabus?, (c) How much new
information and knowledge did you receive in the course?, and (d) How ac-
tionable do you think the information is that you received in the course?

Fig. 2. Responses 1-7 to questions (a)-(d) about the course 2017-2018-S2

Finally, we asked them to provide free feedback on:
(a) What do you like best about this course?, (b) What would you like

to change about this course?, (c) What do you think is this instructor’s
greatest strength?, and (d) What suggestions would you give to improve
this instructor’s teaching?
and to indicate “Approximately how many class meetings have you missed
(including excused absence)?”
Respondents liked the weekly homework, the clarity of presentation, feeling
they became better organized in problem solving in general, and an improve-
ment in their presentation skills. The weekly homework with the student
presentations was mentioned most.
Respondents would like to change the textbook, the grading of the homework
(expressing that not presenting when they had done the homework felt like
a waste of time), add more coverage of RSL.
Respondents suggested changing the homework evaluation (again expressing
that not presenting when they had done the homework felt like a waste
of time), changing the textbook, shortening the exams and switching to
a different formal language than RSL. Changing the homework evaluation
was mentioned most.



Preprin
t

11

2. 2018-2019 semester 2 We conducted a similar survey after the second offering
of the course. The response rate was lower than the first semester. This
is likely due to the fact that a student created his own survey during the
semester. While we do have the results of this survey also, the survey was
structured very differently to ours which makes results hard to compare.
Only 6 of the 53 students responded to our survey with results shown in
figures 3 and 4.

Fig. 3. Responses 1-7 to questions (a)-(o) about the professor 2018-2019-S1

Fig. 4. Responses 1-7 to questions (a)-(d) about the course 2018-2019-S1

On the free feedback respondents liked the practicality of the topics, their
exposure to project planning, that “it teaches you good problem solving



Preprin
t

12

skills”, and their experience in peer assessment. They disliked the slides
from the textbook and would like to see the use of RSL removed or at
least to spend more time introducing it. They would also like to change the
domain they were assigned for the semester to be more like a project they
pursue throughout the semester.

6 Lessons Learned & Future Work

The blogs (high participation, not anonymous) and the surveys (low participa-
tion, anonymous) by themselves give very incomplete pictures, even when com-
bined we have to be careful not to follow a few opinions just because they are
voiced loudly.

Respondents did not find the course’s message to be very actionable. For the
future, we hope to improve upon this by more strongly tying the homework
exercises together into a single project. While the textbook already goes a long
way on this, we feel that students perception of the exercises and the perceived
actionability of their experience will improve with this change.

Respondents disliked the high workload of the homework. We hope that this
perception changes at least in part when we integrate (most of) the current
individual homework exercises into one semester-long project.

No respondent expressed a like for RSL, some expressed dislike, others did not
mention it. We need to evaluate how to best improve this. Options include spend-
ing more time introducing RSL at the start of the course. This would clearly
help students with reading and writing in that language. It would not address
students’ concern that there is too little additional material (tutorials, blogs,
…) available and/or no visible use of RSL in industry. Another option would be
to switch to a different formal language, e.g. TLA+/Pluscal. While this would
give the students many more secondary sources of material to study, it would
also require a thorough evaluation of the differences e.g. in the representation
of internal vs. external nondeterminism, in the treatment of concurrency and
synchronization, as well as a redevelopment in TLA+/Pluscal of a substantial
portion of the examples used in the textbook.

Dislike of the slides accompanying the textbook. An obvious option would be
to create slides in a style similar to the slides on time management, scheduling,
tracking, and estimation, which the respondents preferred. We also consider
transitioning more to a flipped classroom, i.e. successively replacing slide-based
lectures with in-class demonstrations of solving example problems.

7 Conclusion

We have shared our experience revising the I2SE course to reflect - what we feel
- is a more modern approach rooted in the philosophy that formal texts and in-
formal texts complement one another. We explored existing teaching materials
and courses offered elsewhere on whether they were compatible with our philos-
ophy. Except for the textbook we chose, none of the others seemed compatible



Preprin
t

13

with these views. Our initial situation imposed diverse constraints on the course
revision. We had to adjust some of our initial choices in order to satisfy these
constraints. The course now differs from traditional I2SE courses in its use of
suitable formalism to complement most of the topics of traditional I2SE courses.
Reception is still far from what we aim for. In future offerings of the course will
improve based on the feedback we received from our past students.

References

1. Course listing. https://www.eng.mcmaster.ca/cas/programs/course-listing,
last accessed 2019/05/13

2. Moodle. https://moodle.org/, last accessed 2019/05/13
3. Verigames. http://verigames.com/about-us.html, last accessed 2019/05/13
4. Grade for assessment. https://docs.moodle.org/36/en/Using_Workshop#Grade_

for_assessment (May 2017), last accessed 2019/03/05
5. Software construction. http://web.mit.edu/6.031 (2019), last accessed

2019/05/13
6. Arms, W.Y.: Software Engineering. http://www.cs.cornell.edu/courses/

cs5150/2019sp/lectures.html, last accessed 2019/05/13
7. Bjørner, D.: University Curricula in Software Technology. In: B.Z. Barta, S.H.,

Cox, K. (eds.) Software Engineering Education. pp. 5–16. [], Elsevier (1993).
https://doi.org/10.1016/c2009-0-10293-3

8. Bjørner, D.: Abstraction and Modelling. In: Software Engineering [10]
9. Bjørner, D.: Domains, Requirements, and Software Design. In: Software Engineer-

ing [10]. https://doi.org/10.1007/3-540-33653-2
10. Bjørner, D.: Software Engineering. Texts in Theoretical Computer Science. An

EATCS Series, Springer-Verlag, Berlin (2006)
11. Bjørner, D.: Specification of Systems and Languages. In: Software Engineering [10]
12. Bjørner, D., Cuéllar, J.R.: Software Engineering Education: Rôles of Formal Spec-

ification and Design Calculi. Annals of Software Engineering 6(1/4), 365–409
(1998). https://doi.org/10.1023/a:1018969717835

13. Carlo Ghezzi, Mehdi Jazayeri, D.M.: Fundamentals of Software Engineering. Pear-
son, Prentice Hall, 2nd edn. (2003)

14. Goelman, D., Hilburn, T.B., Smith, J.: Support for Teaching Formal Methods
Report of the ITiCSE 2000 Working Group on Formal Methods Education (2000),
http://www.cs.utexas.edu/users/csed/FM/work/final-v5-7.pdf, last accessed
2019/05/14

15. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
16. Humphrey, W.: Introduction to the Personal Software Process. Addison-Wesley,

Reading, Mass (1997)
17. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML

Models to Software Specifications. John Wiley, Chichester, England Hoboken, NJ
(2009)

18. Lethbridge, T.: What Knowledge is Important to a Software Professional?
Computer 33(5), 44–50 (2000). https://doi.org/10.1109/2.841783, last accessed
2019/05/14

19. Mills, B.: Practical Formal Software Engineering: Wanting the Software You Get.
Cambridge University Press, Leiden (2009)

https://www.eng.mcmaster.ca/cas/programs/course-listing
https://moodle.org/
http://verigames.com/about-us.html
https://docs.moodle.org/36/en/Using_Workshop#Grade_for_assessment
https://docs.moodle.org/36/en/Using_Workshop#Grade_for_assessment
http://web.mit.edu/6.031
http://www.cs.cornell.edu/courses/cs5150/2019sp/lectures.html
http://www.cs.cornell.edu/courses/cs5150/2019sp/lectures.html
https://doi.org/10.1016/c2009-0-10293-3
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1023/a:1018969717835
http://www.cs.utexas.edu/users/csed/FM/work/final-v5-7.pdf
https://doi.org/10.1109/2.841783


Preprin
t

14

20. Pfleeger, S., Atlee, J.: Software Engineering: Theory and Practice. Pearson Prentice
Hall (2006)

21. Prasetya, I.S.W.B., Leek, C.Q.H.D., Melkonian, O., Tusscher, J.t., Bergen, J.v.,
Everink, J.M., Klis, T.v.d., Kostic, P., Meijerink, R., Oosenbrug, R., Oostveen,
J.J., Pol, T.v.d., Vries, M.d., Zon, W.M.v.: Having Fun in Learning Formal Spec-
ifications. CoRR (2019), http://arxiv.org/abs/1903.00334v1

22. Schach, S.: Object-Oriented and Classical Software Engineering. McGraw-Hill,
New York (2011)

23. Sommerville, I.: Software Engineering. International Computer Science Series,
Pearson (2011)

24. Spichkova, M.: ”Boring Formal Methods” or ”Sherlock Holmes Deduction Meth-
ods”? CoRR (2016), http://arxiv.org/abs/1612.01682v1

25. Spolsky, J.: Evidence based scheduling. https://www.joelonsoftware.com/2007/
10/26/evidence-based-scheduling/ (2007), last accessed 2019/05/03

26. Zamansky, A., Farchi, E.: Exploring the Role of Logic and Formal Methods in Infor-
mation Systems Education, pp. 68–74. Software Engineering and Formal Methods,
Springer Berlin Heidelberg (2015). https://doi.org/10.1007/978-3-662-49224-6_7

http://arxiv.org/abs/1903.00334v1
http://arxiv.org/abs/1612.01682v1
https://www.joelonsoftware.com/2007/10/26/evidence-based-scheduling/
https://www.joelonsoftware.com/2007/10/26/evidence-based-scheduling/
https://doi.org/10.1007/978-3-662-49224-6_7

	Modernizing the Introduction to Software Engineering Course



